
Idea: train model by slowly reducing the loss function on the weights  , inputs  

Batch Gradient Descent: Given some loss function       :

        
       

   
        

Stochastic Gradient Descent: perform the update by taking the loss only at one data point

        
        

   
         

Minibatch Gradient Descent: perform gradient descent for a reasonable number of examples

       
        

   
       for batch  

Gradient Descent
Tuesday, January 9, 2024 6:38 PM
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Linear Regression: Given matrix  containing N data points of d dimensions and targets  

Fit the model:

     

By minimizing the sum squared error:

    
 

 
          

 
 
 

 
         

 

   

With the solution:        
  
   

Using gradient descent: 
  

   
    

 

 
              

   
   

Therefore:        
 

 
            

 -

Delta rule:        
 

 
       

 
for the delta between target and prediction-

•

Perceptron: Linear regression with binary threshold

Given weights  and threshold  

   
          
           

If we defied           and have weights   

    
           
           

Learning:

              , for    ,          

Multiclass: train multiple outputs, then take the largest

Logistic Regression: Gives a probability on the inputs

     
 

   
   ,      ,       

Using MSE in gradient descent:

         
 

 
        

 
 

   

       
  

   
   

  

   
    

 

 
       

 

   

              
 

But will cause errors because of the g(a) term. The correct loss function is cross entropy.

Softmax Regression: Multiclass logistic regression

Train   for each class    , then       and    
     

      
 
 

       

Regression, Perceptron, Logistic
Tuesday, January 9, 2024 6:26 PM
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We want to perform gradient descent for each layer:

Given objective function J, then for some layer with inputs  , outputs  and weights    :

  

    
     

  

   
   

   

    
          

For output units:      

For hidden units    :                 
 
 

Backprop
Thursday, January 11, 2024 5:34 PM
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Early stopping: stop training before overfitting, use validation set to detect the best stop point

More data: Get more/manufacture more data

Regularization: 

Minimize the complexity of the network through regularization

Minimize:       for E error and C complexity function

L2: minimize     , derivative:   , make weights smaller proprotional to its size
L1: minimize    , derivative: 1 , make weights smaller at a constant rate
Brummelhart: eliminate small weights

Dropout:

During training, disable some fraction of hidden layers

Explore different models, make layers less dependent on each other

Add noise:

Add gaussian random noise (0 mean) to inputs, hidden units, or output

Dealing with Overfitting
Thursday, January 18, 2024 7:55 PM
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Minibatch:

Saves memory-

Still more accurate than stochastic-

Shuffle the inputs

Ensure a good distribution of labels in the shuffled batch-

PCA: Principle component analysis

Shifts the mean of the input variables to 0-

Decorrelates the inputs-

Discard dimensions with smallest eigenvalues-

For neural nets, also:

Divide by stdev-

Makes input space have 0 mean and 1 standard deviation-

Z-score: 

Shifts the mean of the input variables to 0-

Divide by stdev-

Change sigmoid:

Use 1.7159*tanh(0.667x) for sigmoid function-

Initializing weights:

Want to initialize weights to have 0 mean and 1 standard deviation-

       
 

 
 
 

 
 for layer with i inputs (fan in)-

Batch Normalization:

Normalize inputs to 0 mean and 1 standard deviation over each mini batch-

Perform this for inputs to each layer-

Add learnable parameters to "undo" normalization-

Allows model to choose to learn the mean if important, otherwise it is ignored-

Performs normalization across each dimension-

Momentum:

Keep running average of weight changes-

Add running average to delta rule, allows it to accelerate towards the common direction-

                -

       -
Calculate the momentum then jumps in the direction of momentum-

Nesterov momentum: make the jump then calculate the momentum and correct-

Adaptive Learning Rates:

Adjust learning rates for each weight-

Use global learning rate and multiply by gain for each weight-

          -

Increase gain if gradients are consistent,             -

Decrease gain if gradients are changing sign,              -

Rprop:

Use only the sign of the gradient-

Weight updates are all the same magnitude-

Works well only for full batch-

Divide gradient by magnitude-

Normalization, Weight Initialization, Momentum
Thursday, January 18, 2024 8:22 PM

   CSE 151B Page 5    



Divide gradient by magnitude-

RMSprop:

Keep moving average of squared gradient for each weight-

Divide gradient by moving average-
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Locality: Nearby pixels correlate with nearby pixels1.

Stationary statistics: Statistics relatively uniform across image2.

Translation invariance: identity of objects seldom depend on its position3.

Compositionality: objects are made of parts4.

Convolutional Networks: apply convolutional filters across input

Forward: for each convolution kernel

Window size: how large of a window to sample the input○

Convolution: take small window of the input and feed forward into neural network, get feature map○

Non-Linear: apply non-linear activation function (ie ReLu)○

Pooling: pool the output together to form one output of the kernel, max or sum or average○

Stride: How far to slide the window each iteration○

Get a feature map for each kernel applied over the whole image○

Stack convolution layers before pooling○

Example:  
      
   
   

 detects horizontal edges

Choosing hyperparameters: need to choose # layers, # features, feature parameters

Use random search and cross validation○

Convolutions + maxpool = translation invariance

Backward: Backprop and delta rule as usual

Depth: 

Depth allows features of features to be learned, features become more abstract in deeper layers-

Deeper networks better as long as gradients pass backwards easily-

Reuse pre-trained network to compute features, then use softmax/logistic units to adapt to certain task-

Convolutional Networks
Thursday, January 25, 2024 8:28 PM
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Invariance:

Translation invariance built into the architecture

Scaling invariance learned from the dataset

No rotation invariance

Design:

Design one modular structure then add more

Network in network: instead of maxpooling, create small FCN to learn how to combine features

Global average pooling: replace output FCN with pool that averages the output features

1x1 convolutional layer: can create kernel of size 1x1 with to control size of next layer

GoogLeNet: 

Each module combines 1x1, 3x3 maxpooling, 3x3, 5x5 into a single layer○

Repeat multiple modules, increasing number of features as it progresses○

Residual Networks: introduce pass through into each layer

Each layer's output becomes F(x) + x○

Visualizing Features: Raw coefficients of filters in higher layers difficult to interpret

Project activations back into pixel space

For maxpool, keep track of which activations were the maximum○

Optimize back to input to maximize a particular feature map or class

Take derivative of neuron's activation w/r to input and try to maximize, tells what the neuron will respond to○

Adversarial examples: applies to linear classifiers as well

Training tips: 

Start with larger training rate and slow over time

Ensure feature maps are uncorrelated and have high variance

Invariance, Design, Visualization, Tips
Tuesday, January 30, 2024 10:21 PM
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Maximum likelihood: maximize the probability that the weights explain the data

        
          

    
             

                

           
                

Probability of data is normalizing constant

We have no reason (priori) to assume that some W's are better than others

Maximize the modeling of the distribution, P(D|W)

Minimize the negative log likelihood = error: argmin            

In neural netowrks we want to minimize negative loss:

                           

                                 

Regression: we assume that the data has some underlying function plus some normal distribution

Minimize the Sum Squared Error:    
 

 
       

 

Logistic Regression & Neural Networks: minimize the difference between output distributions and underlying distributions

Minimize the Cross Entropy Error:          
           

    
 

 
 

Clustering: 

Siamese Neural Networks: performs clustering, dimensionality reduction through supervised learning

Two identical networks with same weights, linear output ○

Trained to minimize distance between two points in same category○

Trained to maximize distance between two points in different categories○

Amplifies dataset, learns on pairs of examples○

Loss:         
 

 
   

      
 

 
              

 

For D distance between outputs of the networks

M is some margin

Y is 1 for different pairs, 0 for same pairs

In General: the assumption of data distribution leads to different objective functions

Gaussian -> SSE-

Bernoulli -> cross entropy-

Multinomial -> cross entropy-

Objective Functions
Thursday, February 1, 2024 2:01 PM
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Idea: want to model sequences over time

Map time into space (map time into fixed input window and move window)

Autoregressive models: predict next element from some previous elements○

-

Map time into the state of the network

Recurrent networks: cyclical network, stores state based on what came before○

-

RNNs: maps time into state using feedback loops

Jordan networks: Output feeds back into hidden layer

Elman networks: hidden layers feed back into themselves

BPTT(1): backprop deltas calculated for one time delta

Backpropagation:

Propagate activations forward in time                  
Propagate deltas backward

Weight change is the average of weight changes over time periods

RNN on long sequences can lead to exploding or vanishing gradients

Can specify targets for:

All time layers○

Final time layer○

Subset of time layers○

Training: curriculum training

Start with small dataset and increase size as it converges to decent error

Recurrent Neural Networks
Thursday, February 1, 2024 2:58 PM
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Idea: want RNNs to remember things for a long time

LSTM Cell:

Linear unit with self-link and weight 1-

Information stored when write gate is on-

Information read when read gate is on-

Information kept when keep gate is on-

Resolves the issue of vanishing gradients-

Can latch memory to remember things for longer-

Uses:

Use RNNs to generate data

Train on large corpus of words and predict the next word○

Use RNNs to translate sequences

Use convnet + RNN to create image labeling/captioning models

LSTM, Uses
Tuesday, February 6, 2024 11:48 PM
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Train recurrent neural network that can interface from structured memory to simulate a turing machine

Need to make addressing differentiable for both content and location based addressing-

Memory made of matrix of linear neurons, learns to use softmax and weighting to address specific neurons from memory-

Content based addressing: find memory by content -

Ex: 

If    
 

 
  
 

 
    then it would return the average of first two rows

Writes performed by gating, wiping memory and then adding to the neurons               
Two steps because there are no arithmetic operations for overwriting○

Could add a delta vector, but that would require 3 steps: read current state, calculate delta, add delta to memory○

Computing the address:

  : key vector for contrent addressable memory○

  : gain parameter on content match○

  : switch gate between content and location based addressing○

  : shift vector to increment or decrement address○

  : gain parameter on softmax address, making it more binary○

All operations are differentiable w/r to the parameters so we can backprop through them

Can perform copy, repeated copy, associative recall (remember pairs of words), priority sort

Neural Turing Machine
Thursday, February 8, 2024 8:01 PM
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Recurrent Attention Model: RNN model what can focus on specific parts of images and decide where to look next

Top RNN: controls where to look next 

Bottom RNN: performs classification task looking at the region that the controller network output

"Context" & "Glimpse": 3 layer CNN with no pooling

"Emission": 1 hidden layer feed forward network and softmax output

Training: 

Classification: as usual, compare y with target and perform backprop

Location: reinforcement learning, reward network when it picks a location that works well

Start with random locations and encourage it to explore, later exploit what it has learned○

RAM Net
Saturday, February 17, 2024 11:01 PM
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Idea: want to transform time into space via attention, bypass need to use RNNs or CNNs

Transformer Networks: feedforward networks

Process whole input in parallel without relying on previous states

Much faster training than RNNs, inputs processed in parallel

Allows the model to attend to different parts of the input when making predictions

Encoder focuses on different parts of the input sequence to generate a representation of the input sequence

Image Transformer (ViT):

Same architecture-

Trained on large dataset-

Cut image into patches, feed into linear projection layer to learn positional embeddings-

Universal Transformer Networks: 

All attentional filter layer have shared weights-

Effectively an unrolled recurrent neural network-

But, each tower decide adaptively how many iterations to run-

Perform better than Transformer Nets-

Each input is put through the same embedding and hidden vector

Encoded inputs can then "communicate" through linked attentions

Each "tower" of attention filters are identical, but are different between each layer

Each layer computes a different function-

Each tower generates a vector of what it's looking for, and what it has

The inputs to the attention layer are the outputs of the previous layer.-

They come in through three weight matrices-

The Key and Query matrices produce vectors. Their inner product goes into a SoftMax

Key: what I have○

Query: what I'm looking for○

-

Then the Value matrix output is weighted by the SoftMax.-

This is a form of self-attention-

       ,          ,          

               

Use 8 attention "heads" for each tower, repeated with shared weights for each input dimension

Learns the relationships between what each input represents, what follow up "question" to 

ask, and what to pass onto the next layer

Transformer Networks
Saturday, February 17, 2024 11:25 PM
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Idea: train model on arbitrary task by reinforcement feedback to learn a policy

Policy: models actions probability given state

Increase probability that a good move is played rather than a bad one-

Gradient: 

Sample softmax distribution from output1.

Treat the sample as the "teacher"2.

Compute weight changes add them to running average of changes3.

At the end, multiply the weight changes by the sign of the reward4.

Change the weights after one cycle5.

-

Over time, good actions will become more likely

Maximize long term expected reward:

               
       

For      (shortsighted vs farsighted)

Assumes the Markov property (the current action only relies on the current state)

Value of a state:      expected long term return of being in the state by following the policy

Exploration: want to explore different options rather than picking the best known paths, may discover better ones

Epsilon greedy: pick a random action with probability  
Start with large  and decrease over time-

Q-Learning: learning a state-action function

                      

Does not require a world model, just learn the next state given the current state

Use the Q-value of current state to update the previous state, propagate Q-values back to goal state over time

Minimax: Maximize the expected long term reward using a heuristic function

Initial state: Board position and whose turn it is

Operators: legal moves that player can make

Terminal test: test of the state to tell if game is over

Value function: numeric value for outcome of game

TD-Gammon: neural network function approximator learned to estimate value for each player

Temporal difference rule: delta is proportional to the difference in next board state and current board state•

                       
 

 

    •

AlphaGo: supervised learning on expert positions

Train multiple networks•
Shallow network performs rollouts to see what good moves are•

Deep network plays itself and trains by policy gradient•
Value network trained to predict winner from states•

Use Monte Carlo tree search

Traverse tree to depth limit L-

-

Reinforcement Learning
Wednesday, February 21, 2024 5:42 PM
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Traverse tree to depth limit L-

Actions selected by maximum value of move plus exploration term-

Exploration term increases more a move is not tried-

Node evaluated by value network, rollout of fast policy network-

AlphaGo Zero: learned only by self play

Used one network for both value and policy-

Simplified Monte-Carlo tree search for training

Each node keeps estimated Q-value-

Number of times action tried-

Upper confidence bounds that shrinks as node is explored more-

-

ResNet with batch norm-
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AlphaStar: trained to play starcraft 2

Real time game with imperfect information (fog of war)-

Initially trained using supervised learning on replays by expert players-

Then reinforcement learning by continually minimizing the KL-distance to supervised network-

League play: play against other agents designed to exploit certain strategies

Main agents will eventually play the game○

Main agents play against everyone in the pool and themselves○

Main exploiters play against main agents and past agents○

League exploiters only play against past agents○

All agents intermittently add frozen copies of themselves○

-

Actor-critic architecture, multiple models for encoding inputs, and decoding action outputs

Inputs encoded using MLP, transformer, ResNet (minimap)○

Core using Deep LSTM○

Output embeddings using MLPs○

Outputs: action type, delay, selected units, target units, target point○

Value network○

-

Limit to 22 moves every 5 seconds

Results: beats 99.85% of human players

AlphaStar
Thursday, February 22, 2024 8:27 PM
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Epsilon-greedy to choose action: 

Choose random action with probability  -

Otherwise choose the best action-

1.

Take action and observe the reward r and new state s'2.

Update the Q-value for the action and previous state3.

Temporal difference method: minimize difference between current state and states reachable from now

Q-Learning
Tuesday, February 27, 2024 8:48 PM
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Autoencoders: learn to encode an input to lower dimensional representation

Similar to PCA, spans the principle subspace-

Typically have smaller hidden layer size than input/output-

Multiple hidden layers can lead to non-linear representations (data manifold)-

Autoencoders
Thursday, February 22, 2024 8:53 PM
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Two networks: 

Generator: decoder network-

Adversary: discriminator network-

Generator tries produce data to fool discriminator into believe it is read data

Trained by backprop from going uphill from discriminator○

-

Discriminator tries to determine if generated image is real or fake data-

Similar to games, we can describe the ojective using minimax:

Training:

Give generator random noise and generate k outputs-

Take k real samples from training set-

Train discriminator to tell real from fake-

Give generator random noise and generate k outputs-

Train generator objective function holding discriminator fixed-

Generator may not train well because discriminator can get ahead of the generator, instead max log(Dd(Gg(z))

Conditional GAN: learn to condition input to output, convert one image to another

For example, replace a horse to zebra in an image

Cycle GAN: Train the model to convert from one image to another and then back as similar as possible

Cycle consistency loss: Minimize the loss between original and cycled image

Progressively growing GANs: as models train, grow model size

ReCycle GAN: maps video to video

Cycle GANs frame-by-frame resulted in loss of temporal information-

Spatial information alone not enough to learn movement, requires temporal knowledge-

Generator: U-Net architecture using previous 2 frames to predict next frame

General Adversarial Networks
Thursday, February 22, 2024 9:04 PM
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Metric learning: learning mapping between input and lower dim representation, optimize distances between representations

Often supervised because we want to cluster inputs-

Self-supervision: want to perform supervised learning without labeled data

Learn features such that                   -

Learns to map an input to an augmented version of the image (cropping, rotation, color mapping)-

SimCLR: 

Take input and perform 2 transformations and generate representations  using pretrained model (ie ResNet)1.

Feed representations  through 1 hidden layer network with output  and maximize agreement 

 discards information about color, orientation, etc-

Maximize agreement between  -

Discard linear layer-

Feed  into a non-linear classifier, traing classifier separately-

2.

Used normalized temperature-scaled cross entropy loss

Vectors  are normalized to length 1-

Use cosine similarity-

               -

             
    

   
     

     
   
     

  
     

               -

Maximizes cosine distance for correct pair against all incorrect pairs-

3.

Compose augmentations stochastically (randomly)

Apply cropping uniform size -

Aspect ratio change-

Apply randomized color change or greyscale

Don’t want model to only use color information▪

-

4.

Contrastive Learning
Tuesday, February 27, 2024 9:29 PM
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Combines CLIP + Diffusion

CLIP: aligns image internal representations with text representations

Learn to associate captions and images using contrastive learning-

Transfers without extra training to other tasks achieving good performance

Ie ImageNet:○

Encode labels as "A photo of an X"○

Encode images and pick the highest match (inner product)○

Does not do well on extremely niche distributions○

-

Gathered images using captions which included one of 500k query words-

Use contrastive learning to predict which text as a whole pair with each image

Train text encoder to encode captions - transformer○

Train image encoder to encode images - ResNet○

Objective: maximize the inner product between associated text and images, minimize unrelated text and images○

-

Diffusion: takes text embeddings and generates images

Create dataset by adding random Gaussian noise  times-

Train model to take  , random noise, and regenerate the image-

Compute loss and apply gradient descent for each step of denoising-

U-net architecture-

Time encodings using sinusoidal values (multiple different frequencies can encode large time values)-

Stable Diffusion: model is trained to generate latent (compressed) representations of the images.-

DALLE-2, CLIP, Diffusion
Wednesday, March 6, 2024 12:29 PM
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One-shot pruning:

Prunes insignificant weights all at once-

Iterative magnitude pruning:

Prune fraction of smallest weights-

Retrain model-

Repeat-

Lottery Ticket Hypothesis:

A dense network contains a sub network that can reach the same accuracy after the same training time-

Ideal subnet can be identified through pruning-

Late resetting: After pruning, reset weights to partially trained values (ie after 3 epochs)-

Pruning, Lottery Ticket Hypothesis
Wednesday, March 6, 2024 1:54 PM
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Masked Autoencoder:

Mask inputs to autoencoder and train to predict masked word-

For images, mask image patches and train model to fill in missing patches-

BYOL: 

Train encoder network using a momentum encoder in parallel-

Joint Embedding Predictive Architecture:

Trains two encoders, one is a exponentially-moving average of the other-

Masks patches of the video and trained to predict the missing patches, masks in space and through time-

Predicts in latent spce-

Encoders are Vision Transformer models-

JEPA, BYOL, Masked Autoencoder
Wednesday, March 6, 2024 3:00 PM
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ReZero:

For transformers:

ReZero
Wednesday, March 6, 2024 3:38 PM
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